Auszug | eb - Elektrische Bahnen 10 | 2019

Nur zur eigenen Verwendung, nicht zur Veröffentlichung oder Vervielfältigung! 397 Rolling Stock Engineering 117 (2019) Heft 10 Traction motors with higher rotational speed for Electrical Multiple Units Jens Brand, Olaf Koerner, Freerk Jacobus Oude Kotte, Nürnberg; Thomas Oehler, Penig The market for rolling stock requires small, quiet and efficient traction drives, while reducing the costs at the same time. A promising concept to achieve this goal is the development of motors with higher rotational speed, together with the appropriate gear unit. For traction drives, a high speed asynchronous motor platform has been developed for commuter rail operation. Further develop- ment has resulted in an engine including a gear unit for metro vehicles, which highlights the advan- tages of the high speed concept compared to a propulsion system of proven conventional design. Fahrmotoren mit höherer Drehzahl für elektrische Triebzüge Der Markt für Schienenfahrzeuge verlangt immer mehr nach kleinen, leisen und effizienten Trakti- onsantrieben bei gleichzeitiger Reduktion der Kosten. Ein vielversprechendes Konzept, diesen Anfor- derungen gerecht zu werden, ist die Entwicklung von hochdrehenden Motoren zusammen mit den entsprechenden Getrieben. Für Traktionsantriebe wurde eine Hochdrehzahl-Asynchronmotoren- Plattform für Traktionsantriebe von Nahverkkehrsfahrzeugen entwickelt. Eine Weiterentwicklung führte zu einem Motor inklusive Getriebe für Metro-Fahrzeuge, bei dem die Vorteile des Hochdreh- zahlkonzepts im Vergleich zu einem bestehenden Antriebs-System deutlich werden. Moteurs de traction à vitesse de rotation accrue pour trains automoteurs électriques Le marché des matériels ferroviaires nécessite des convertisseurs de traction silencieux, à haut rende- ment et à encombrement réduit, tout en réduisant les coûts. Un concept prometteur pour atteindre cet objectif consiste à développer des moteurs à vitesse de rotation élevée, associés à une transmis- sion appropriée. Pour la transmission de l’effort de traction, une plateforme de moteur asynchrone à grande vitesse de rotation a été développée pour des trains de banlieue. Un développement complé- mentaire a conduit à un moteur incluant la transmission pour des rames de métro, qui met en lumi- ère les avantages du concept de la grande vitesse comparés aux systèmes de traction de conception éprouvée. 1 Introduction The mechanical power P mech of rotating machines is the product of speed n and torque T : P mech =  2π nT . Torque essentially determines the size of an electrical machine. Therefore, for the same power P mech , elec- trical machines with higher rotational speed offer the advantage of being smaller in size and lighter com- pared to low-speed machines. The smaller and light- er machine with higher rotational speed provides the chance to reduce the machine cost as well, un- less the technical measures for the speed increase are leading to cost increases, e. g. for more complex and expensive rotor designs. Additionally, complexity, weight and cost of the gear unit which adapts the rotational machine speed to wheelset speed have to be considered. The in­ creased machine speed requires an equivalent in- crease in gear ratio. A system approach for motor, gear unit and inverter is needed to achieve the full advantage and to find the overall optimum. Besides efficiency, reliability and maintainability, • cost, • weight and • size are important criteria for the development of trac- tion motors and gear units. Moreover, low noise emission is more and more important for train op- erators and passengers. This paper focuses on the development of traction motors with higher rota- tional speed and associated gear units for Electrical Multiple Units (EMU) in metro and commuter rail (CR) operation. Most drives (motor and gear unit) for these applications are so-called half-suspended drives with fully suspended motors, toothed cou- plings and gear units riding on the wheelset shaft. Additionally, the gear units are suspended by a torque support linked to the bogie frame (Figure 1). The given space for the traction drives within the powered bogies is typically very limited [1]. The lat- eral room between the wheels is often shared with braking components like brake discs and calipers. The maximum cross section of the motors is mostly limited by the wheelset base of the bogie and the

RkJQdWJsaXNoZXIy MjY3NTk=